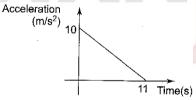
(EPC03-0001H)


- A car moving on a straight road covers one third of the distance with 20 km/h and the rest with 60 km/h.
 The average speed is
 - A) 40 km/h
 - B) 80 km/h
 - C) $46\frac{2}{3}$ km/h
 - D) 36 km/h

(EPC03-0002E)

- If the displacement of a particle is directly proportional to the square of time. Then particle is moving with
 - A) Uniform acceleration
 - B) Variable acceleration
 - C) Uniform velocity
 - D) Variable acceleration but uniform velocity

(EPC03-0003E)

• A particle starts from rest. Its acceleration (a) verus time (t) is as shown in Figure. The maximum speed of the particle will be:

- A) 110 m/s
- B) 55 m/s
- C) 550 m/s
- D) 660 m/s

(EPC03-0004E)

- When two bodies move towards each other with constant speeds, the distance between them decreases at the rate of 6 m/s. If they move in the same direction with the same speeds, the distance between them increases at the rate of 4 m/s. Then their speeds are
 - A) 5 m/s and 1 m/s
 - B) 3 m/s and 3 m/s
 - C) 4 m/s and 2 m/s
 - D) none of the above

(EPC03-0005M)

• A stone is dropped from a height *h*. Simultaneously, another stone is thrown up from the ground which reaches a height 4*h*. The two stones cross each other after time

A)
$$\sqrt{\frac{h}{2g}}$$

B)
$$\sqrt{\frac{h}{8g}}$$

C)
$$\sqrt{8hg}$$

D)
$$\sqrt{2hg}$$

(EPC03-0006M)

- The speed with which a ball should be thrown down, so that it bounces 10 m higher than its original level, assuming no energy loss in striking the ground, is
 - A) 10 m/s
 - B) 14 m/s
 - C) 20 m/s
 - D) None of the above

(EPC03-0008E)

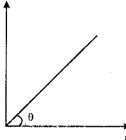
- A stone, thrown vertically upwards from the top of a tower with an initial velocity u, reaches the ground with a velocity 3u. The height of the tower is
 - A) $\frac{3u^2}{g}$
 - B) $\frac{4u^2}{g}$
 - C) $\frac{6u^2}{g}$
 - $\mathsf{D}) \quad \frac{9u^2}{g}$

(EPC03-0010E)

- A body, released from the top of a tower of height h, takes time t to reach the ground. At time t/2 its height from the ground was
 - A) h/4
 - B) h/3
 - C) h/2
 - D) 3h/4

(EPC03-0011H)

- A ball is dropped from a great height. One second later, another ball is dropped from the same height. The distance between them 3 s after the first ball is dropped is $(g = 10 \text{ m/s}^2)$
 - A) 25 m
 - B) 20 m
 - C) 50 m
 - D) 10 m



(EPC03-0012E)

- A car travels for a certain time. Its speed during the first half time is v_1 and that during the second half time is v_2 . Find the average speed.
 - A) $v_1 + v_2$

(EPC03-0013E)

The displacement-time graphs for two particles A and B are straight lines inclined at 60° and 30° to the time axis. Find the ratio of their speeds.

- A) $\sqrt{3}$

- D) $3 + \sqrt{3}$

(EPC03-0015E)

- A ball is projected vertically upwards form the ground with a velocity of 20 m/s. How long will it take to reach the highest point? (Take $g = 10 \text{ m/s}^2$)
 - A) 1s
 - B) 3 s
 - C) 2 s
 - D) 4 s

(EPC03-0016M)

- Two masses, each equal to m, are attached to one another by a massless string passing over a smooth pulley. The tension in the string is
 - A) mg
 - B) 2mg
 - C) mg/2
 - D) Zero

(EPC03-0017E)

- A ball of mass 0.1 kg strikes a wall normally with a speed of 30 m/s and rebounds with a speed of 20 m/s. The impulse of the force exerted by the wall on the ball is
 - A) 1 NS
 - B) 5 NS
 - C) 2 NS
 - D) 3 NS

(EPC03-0021M)

- A 6 kg box sled is travelling on ice at a speed of 9 m/s when a 12 kg packet is dropped into it vertically. The velocity of the sled will now be
 - A) 3 m/s
 - B) 4 m/s
 - C) 6 m/s
 - D) 8 m/s

Answer Key	
	D A
2	Α
3	В
4	Α
5	В
1 2 3 4 5 6	В
7 8	В
8	D
9	Α
10	В
11	В
12	B C A
13	Α
14	B A
15	Α

