
(ECC02-0007E-PMC-02M)

- If the four tubes of a car are filled to the same pressure with N₂, O₂, H₂ and He separately, then which one will be filled first?
 - A) N_2
 - B) O₂
 - C) H₂
 - D) He

(ECC02-0028E-PMC-04H)

• "V" versus "T" straight lines at constant pressures P₁ and P₂ for an ideal gas are shown in figure. Which is correct?

- A) $P_1 > P_2$
- B) $P_1 < P_2$
- C) $P_1 = P_2$
- D) Both B & C

PARHO AUR

(MCC02-UHS-16M)

- Which one of the following statements correct about Charles' law?
 - A) Volume is directly proportional to temperature (at constant P)
 - B) PV = nRT (at const P)
 - C) Reciprocal Volume is inversely proportional to Temperature in Kelvin (at constant P)
 - D) The quotient of P and Temperature in kelvin scale is equal to K (K depends on Pressure)

(MCC02-UHS-17M)

- If a gas is warmed by 1°C, it will _____by 1/273 of its original volume
 - A) Contracts
 - B) Expands
 - C) Shrink
 - D) Squeezed

(MCC02-UHS-18M)

- Which one of the following postulates of kinetic molecular theory (KMT) of gases explains Charles's law?
 - A) Gases exert pressure
 - B) With the increase of temperature kinetic energy of the gas molecule increasesc
 - C) Gas molecules show elastic collision
 - D) No attractive forces among gas molecules

(MCC02-UHS-19M)

- If we decrease temperature of a gas 2 times, its volume will.
 - A) Increase 4 times
 - B) Decrease 4 times
 - C) Decrease 2 times
 - D) Increase 2 times

(MCC02-UHS-21M)

- Which of the following statement correct about Avogadro's law?
 - A) Equal volume of real gas contain equal number of molecules at constant pressure and temperature
 - B) Equal volume of ideal gas contain equal number of molecules at constant mole and temperature
 - C) Equal volume of ideal gas contain equal number of molecules at constant pressure and temperature
 - D) Equal volume of real gas contain different number of molecules at constant pressure and temperature.

(MCC02-UHS-22M)

- Which of the following mathematical expression represent the Avogadro's law?
 - A) $V = R \frac{nT}{P}$ (When T and n are constant)
 - B) $V = R \frac{nT}{P}$ (When T and P are constant)
 - C) $V = R \frac{nP}{T}$ (When T and P are constant)
 - D) $V = R \frac{nT}{P}$ (When T, P and n are constant)

PARHO AUR

(MCC02-UHS-23M)

- Which of the following pairs of gases possess equal volume at STP
 - A) 44g CO₂ and 44g CO
 - B) 16g O₂ and 32g CH₄
 - C) 3.01×10^{23} molecules of CO and 3.01×10^{23} grams molecules of H_2
 - D) 0.5 mole of NO and 16 g O₂

(MCC02-UHS-24M)

- General gas equation is a combination of:
 - A) Boyle's law and Charle's law
 - B) Boyle's law and Avogadro's law
 - C) Avogadro's law and Charle's law
 - D) Avogadro's law and Graham's law

(MCC02-UHS-25M)

Which mathematical relationship doesn't correctly represent behavior of an ideal gas?

A)
$$V = R \frac{nT}{P}$$

B)
$$\frac{P_1 T_2}{V_2} = \frac{P_2 T_1}{V_1}$$

C)
$$M = \frac{dRP}{T}$$

D)
$$\frac{P_1 V_1}{T_1 m_1} = \frac{P_2 V_2}{T_2 m_2}$$

E) Both C and D

PARHO AUR

(MCC02-UHS-27M)

- PV/nRT for an ideal gas is called
 - A) Expansion factor
 - B) Depression factor
 - C) Compressibility factor
 - D) Diffusion factor

(MCC02-UHS-28M)

- How will the conditions be changed to prevent the volume of the given gas from expanding when its mass is increased?
 - A) Temperature and pressure increased
 - B) Temperature is lowered, and pressure decreased
 - C) Temperature and pressure increased
 - D) Temperature is lowered, and pressure increased

(MCC02-UHS-29M)

- The molar volume of nitrogen gas is maximum at:
 - A) 25°C and 1 atmc
 - B) 0°C and 2 atm
 - C) 130°C and 1 atm
 - D) 100°C and 2 atm

(MCC02-UHS-30M)

- Gas constant "R" is independent of:
 - A) Pressure of gas
 - B) Volume of gas
 - C) Nature of gas
 - D) Temperature

Answer Key	
1	C
2	C 4 C
2 3	С
4	В
5	В
6	C
	С
8	В
9	D
10	Α
11	Е
12	С
13	E C D
14	C
15	С

