(EMC01-0001E)

- If (x a) is a factor of the polynomial $x^6 ax^5 + x^4 ax^3 + 3x + a 2$, then the value of a is
 - A) 1
 - B) $\frac{1}{2}$
 - C) $\frac{1}{3}$
 - D) 2

(EMC01-0002M)

- The geometric mean of the roots of the equation $x^2 18x + 9 = 0$ is
 - A) 3
 - B) $3\sqrt{2}$
 - C) 9
 - D) $9\sqrt{2}$

(EMC01-0003M)

- If the roots of $x^2 + ax + 9 = 0$ are complex, then
 - A) a < -6
 - B) a < 6
 - C) |a| < 6
 - D) |a| > 6

(EMC01-0004M)

- The value of k for which the quadratic equation $x^2 2x(1+3k) + 7(2k+3) = 0$ has equal roots, is
 - A) 1
 - B) 2
 - C) 3
 - D) 4

(EMC01-0005E)

- If the product of roots of the equation $mx^2 + 6x + (2m 1) = 0$ is -1, then the value of m is
 - A) -1
 - B) $-\frac{1}{3}$
 - C) $\frac{1}{3}$ D) 1

(EMC01-0006E)

- If a and b are roots of $x^2 px + q = 0$, then $\frac{1}{a} + \frac{1}{b}$ is equal to

 - A) $\frac{-p}{q}$ B) $\frac{1}{2p}$ C) $\frac{-1}{q}$ D) $\frac{P}{q}$

(EMC01-0007M)

- One root of the equation $5x^2 + 13x + m = 0$ is reciprocal of the other if m equals
 - A) 0
 - B) 5
 - C) $\frac{1}{6}$
 - D) 6

(EMC01-0008M)

- If 1 i is a root of the equation $x^2 + ax + b = 0$, then *b* is equal to
 - A) 2
 - B) 1
 - C) 1
 - D) 2

(EMC01-0009E)

- If α and β are the roots of $4x^2 + 3x + 7 = 0$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is

(EMC01-0010H)

- If α and β are the roots of the equation $x^2 + 2x + 4 = 0$, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to

(EMC01-0011H)

- Let $p, q \in \{1, 2, 3, 4, 5\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is
 - A) 7
 - B) 8
 - C) 9
 - D) 12

(EMC01-0012M)

- If the difference of the roots of the equation $x^2 + px + 8 = 0$ is 2, then p equals

 - A) <u>+</u> 2 B) -6,2
 - C) -2, 6
 - D) <u>+</u> 6

(EMC01-0013M)

- If one root of the equation $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then the values of p and q are
 - A) $-2, -\sqrt{3}$
 - B) -4, 1
 - C) 2, $\sqrt{3}$
 - D) 4,-1

(EMC01-0014M)

- For what value of m, the ratio of the roots of the equation $12x^2 mx + 5 = 0$ is 3 : 2?
 - A) $5\sqrt{10}$
 - B) $10\sqrt{5}$
 - C) $25\sqrt{2}$
 - D) $15\sqrt{5}$

(EMC01-0015M)

- If (1-p) is a root of the quadratic equation $x^2 + px + (1-p) = 0$, then its roots are
 - A) -1, 2
 - B) -1,0
 - C) -1,1
 - D) 0,1

	A	•
Answers Key		
1	В	
2	A	
3	С	
4	В	
5	С	
6	D	
7	В	
8	D	
9	Α	
10	С	
11	D	
12	D	
13	В	
14	A	
15	В	

