(EMC01-0001E)

- If (x a) is a factor of the polynomial $x^6 ax^5 + x^4 ax^3 + 3x + a 2$, then the value of a is
 - A) 1
 - B) $\frac{1}{2}$
 - C) $\frac{1}{3}$
 - D) 2

(EMC01-0002M)

- The geometric mean of the roots of the equation $x^2 18x + 9 = 0$ is
 - A) 3
 - B) $3\sqrt{2}$
 - C) 9
 - D) $9\sqrt{2}$

(EMC01-0003M)

- If the roots of $x^2 + ax + 9 = 0$ are complex, then
 - A) a < -6
 - B) a < 6
 - C) |a| < 6
 - D) |a| > 6

(EMC01-0004M)

- The value of k for which the quadratic equation $x^2 2x(1 + 3k) + 7(2k + 3) = 0$ has equal roots, is
 - A) 1
 - B) 2
 - C) 3
 - D) 4

(EMC01-0005E)

- If the product of roots of the equation $mx^2 + 6x + (2m 1) = 0$ is -1, then the value of m is
 - A) -1
 - B) $-\frac{1}{3}$ C) $\frac{1}{3}$ D) 1

(EMC01-0006E)

- If a and b are roots of $x^2 px + q = 0$, then $\frac{1}{a} + \frac{1}{b}$ is equal to

 - A) $\frac{-p}{q}$ B) $\frac{1}{2p}$ C) $\frac{-1}{q}$ D) $\frac{P}{q}$

(EMC01-0007M)

- One root of the equation $5x^2 + 13x + m = 0$ is reciprocal of the other if m equals
 - A) 0
 - B) 5
 - C) $\frac{1}{6}$ D) 6

(EMC01-0008M)

- If 1 i is a root of the equation $x^2 + ax + b = 0$, then *b* is equal to
 - A) 2
 - B) 1
 - C) 1
 - D) 2

(EMC01-0009E)

- If α and β are the roots of $4x^2 + 3x + 7 = 0$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is

(EMC01-0010H)

- If α and β are the roots of the equation $x^2 + 2x + 4 = 0$, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to

 - D)

(EMC01-0011H)

- Let $p, q \in \{1, 2, 3, 4, 5\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is
 - A) 7
 - B) 8
 - C) 9
 - D) 12

(EMC01-0012M)

- If the difference of the roots of the equation $x^2 + px + 8 = 0$ is 2, then p equals
 - A) <u>+</u> 2
 - B) -6,2 C) -2,6

 - D) <u>+</u> 6

(EMC01-0013M)

- If one root of the equation $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then the values of p and q are
 - A) $-2, -\sqrt{3}$
 - B) -4, 1
 - C) 2, $\sqrt{3}$
 - D) 4,-1

(EMC01-0014M)

- For what value of m, the ratio of the roots of the equation $12x^2 mx + 5 = 0$ is 3 : 2?
 - A) $5\sqrt{10}$
 - B) $10\sqrt{5}$
 - C) $25\sqrt{2}$
 - D) $15\sqrt{5}$

(EMC01-0015M)

- If (1-p) is a root of the quadratic equation $x^2 + px + (1-p) = 0$, then its roots are
 - A) -1, 2
 - B) -1, 0
 - C) -1, 1
 - D) 0, 1

(EMC01-0016H)

- The roots of equation $2^{2x} 10.2^x + 16 = 0$ are
 - A) 1, 3

 - B) 1, 8 C) 2, 3 D) 2, 8

(EMC01-0017M)

- The solution set of $\sqrt{2x-6} + \sqrt{x+4} = 5$ is
 - A) {5}
 - B) {0, 5}
 - C) {1, 3}
 - D) {3, 5}

(EMC01-0018E)

- Remainder of $x^{64} + x^{27} + 1$ when divided by x + 1 is
 - A) 0
 - B) 1
 - C) 2
 - D) 3

(EMC01-0019M)

- $x^2 + x + 1 + 2k(x^2 x 1)$ is a perfect square for how many values of k?
 - A) 0
 - B) 1
 - C) 2
 - D) 3

(EMC01-0020E)

- Both the roots of the equation $x^2 x 3 = 0$ are
 - A) real and rational
 - B) real and irrational
 - C) real and equal
 - D) imaginary roots

(EMC01-0021E)

- The value of a for which the equation $2x^2 + 2\sqrt{6}x + a = 0$ has equal roots, is
 - A) $\sqrt{2}$
 - B) $\sqrt{3}$ C) 2

 - D) 3

(EMC01-0022M)

- If one root of equation $x^2 + ax + 12 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, then the value of b is
 - A)
 - B)

(EMC01-0023H)

- One root of $mx^2 14x + 8 = 0$ is 6 times the other root. Then m is equal to
 - A) 1
 - B) 2
 - C) 3
 - D) None of these

(EMC01-0024M)

- If $\alpha + \beta = 4$ and $\alpha^3 + \beta^3 = 44$, then α, β are the roots of the equation
 - A) $2x^2 7x + 6 = 0$
 - B) $3x^2 12x + 5 = 0$
 - C) $4x^2 + 22x + 15 = 0$
 - D) $9x^2 27x + 20 = 0$

(EMC01-0025M)

• If $\{\alpha, \beta\}$ is the solution set of $2x^2 - 3x + 5 = 0$, then the equation with solution set $\{\alpha^2 + 1, \beta^2 + 1\}$ is

A)
$$4x^2 - 3x - 18 = 0$$

B)
$$4x^2 - 3x + 18 = 0$$

C)
$$4x^2 - 3x + 18 = 0$$

D)
$$4x^2 + 3x + 18 = 0$$

Answers Key	
1	В
2	A
3	C
4	В
5	С
6	D
7	В
8	D
9	Α
10	С
11	D
12	D
13	В
14	Α
15	В
16	A
17	Α
PARISO AL	JR B
19	C
20	В
21	D
22	D
23	С
24	В
25	D

BUY SUBSCRIPTION TO UNLOCK ALL THE CONTENT

